Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 664
Filtrar
1.
Front Microbiol ; 15: 1327392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371935

RESUMO

Fungi colonizing plants are gaining attention because of their ability to promote plant growth and suppress pathogens. While most studies focus on endosymbionts from grasses and legumes, the large and diverse group of ericaceous plants has been much neglected. We recently described one of the very few fungal endophytes promoting the growth of the Ericaceae Vaccinium macrocarpon (American cranberry), notably the Codinaeella isolate EC4. Here, we show that EC4 also suppresses fungal pathogens, which makes it a promising endophyte for sustainable cranberry cultivation. By dual-culture assays on agar plates, we tested the potential growth suppression (or biocontrol) of EC4 on other microbes, notably 12 pathogenic fungi and one oomycete reported to infect not only cranberry but also blueberry, strawberry, tomato plants, rose bushes and olive trees. Under greenhouse conditions, EC4 protects cranberry plantlets infected with one of the most notorious cranberry-plant pathogens, Diaporthe vaccinii, known to cause upright dieback and berry rot. The nuclear genome sequence of EC4 revealed a large arsenal of genes potentially involved in biocontrol. About ∼60 distinct clusters of genes are homologs of secondary metabolite gene clusters, some of which were shown in other fungi to synthesize nonribosomal peptides and polyketides, but in most cases, the exact compounds these clusters may produce are unknown. The EC4 genome also encodes numerous homologs of hydrolytic enzymes known to degrade fungal cell walls. About half of the nearly 250 distinct glucanases and chitinases are likely involved in biocontrol because they are predicted to be secreted outside the cell. Transcriptome analysis shows that the expression of about a quarter of the predicted secondary-metabolite gene clusters and glucan and chitin-degrading genes of EC4 is stimulated when it is co-cultured with D. vaccinii. Some of the differentially expressed EC4 genes are alternatively spliced exclusively in the presence of the pathogen, altering the proteins' domain content and subcellular localization signal, thus adding a second level of proteome adaptation in response to habitat competition. To our knowledge, this is the first report of Diaporthe-induced alternative splicing of biocontrol genes.

2.
Public Health ; 222: 166-174, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37544128

RESUMO

OBJECTIVES: Suicidal ideation and behaviour are potential outcomes of workplace bullying. This review aimed to determine the extent of the association between workplace bullying and suicidal ideation and behaviour. STUDY DESIGN: The study incorporated a systematic review and meta-analysis. METHODS: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement was followed to conduct a comprehensive systematic review and meta-analysis. A combination of subject terms and free words was used to search nine electronic databases. Two reviewers independently screened articles and extracted information according to the inclusion criteria. A meta-analysis was performed with averaged weighted correlations across samples using the STATA software (version 16.0) from pooled estimates of the main results from all studies. RESULTS: In total, 25 articles of high or medium quality were included in the systematic review; 15 of these were included in the meta-analysis. The prevalence of suicidal ideation and behaviour was 18% and 4%, respectively. Individuals who experienced workplace bullying had 2.03-times and 2.67-times higher odds of reporting suicidal ideation and behaviour, respectively, after adjustment for confounding factors. Moderating and mediating factors may help reduce the risk of suicidal ideation and behaviour for individuals experiencing workplace bullying. CONCLUSION: This study indicated that exposure to workplace bullying significantly increased the risk of suicidal ideation and behaviour.


Assuntos
Bullying , Ideação Suicida , Humanos , Local de Trabalho , Prevalência
3.
Front Plant Sci ; 14: 1222186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469769

RESUMO

Compared to nuclear genomes, mitochondrial genomes (mitogenomes) are small and usually code for only a few dozen genes. Still, identifying genes and their structure can be challenging and time-consuming. Even automated tools for mitochondrial genome annotation often require manual analysis and curation by skilled experts. The most difficult steps are (i) the structural modelling of intron-containing genes; (ii) the identification and delineation of Group I and II introns; and (iii) the identification of moderately conserved, non-coding RNA (ncRNA) genes specifying 5S rRNAs, tmRNAs and RNase P RNAs. Additional challenges arise through genetic code evolution which can redefine the translational identity of both start and stop codons, thus obscuring protein-coding genes. Further, RNA editing can render gene identification difficult, if not impossible, without additional RNA sequence data. Current automated mito- and plastid-genome annotators are limited as they are typically tailored to specific eukaryotic groups. The MFannot annotator we developed is unique in its applicability to a broad taxonomic scope, its accuracy in gene model inference, and its capabilities in intron identification and classification. The pipeline leverages curated profile Hidden Markov Models (HMMs), covariance (CMs) and ERPIN models to better capture evolutionarily conserved signatures in the primary sequence (HMMs and CMs) as well as secondary structure (CMs and ERPIN). Here we formally describe MFannot, which has been available as a web-accessible service (https://megasun.bch.umontreal.ca/apps/mfannot/) to the research community for nearly 16 years. Further, we report its performance on particularly intron-rich mitogenomes and describe ongoing and future developments.

4.
BMC Biol ; 21(1): 99, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143068

RESUMO

BACKGROUND: Diplonemid flagellates are among the most abundant and species-rich of known marine microeukaryotes, colonizing all habitats, depths, and geographic regions of the world ocean. However, little is known about their genomes, biology, and ecological role. RESULTS: We present the first nuclear genome sequence from a diplonemid, the type species Diplonema papillatum. The ~ 280-Mb genome assembly contains about 32,000 protein-coding genes, likely co-transcribed in groups of up to 100. Gene clusters are separated by long repetitive regions that include numerous transposable elements, which also reside within introns. Analysis of gene-family evolution reveals that the last common diplonemid ancestor underwent considerable metabolic expansion. D. papillatum-specific gains of carbohydrate-degradation capability were apparently acquired via horizontal gene transfer. The predicted breakdown of polysaccharides including pectin and xylan is at odds with reports of peptides being the predominant carbon source of this organism. Secretome analysis together with feeding experiments suggest that D. papillatum is predatory, able to degrade cell walls of live microeukaryotes, macroalgae, and water plants, not only for protoplast feeding but also for metabolizing cell-wall carbohydrates as an energy source. The analysis of environmental barcode samples shows that D. papillatum is confined to temperate coastal waters, presumably acting in bioremediation of eutrophication. CONCLUSIONS: Nuclear genome information will allow systematic functional and cell-biology studies in D. papillatum. It will also serve as a reference for the highly diverse diplonemids and provide a point of comparison for studying gene complement evolution in the sister group of Kinetoplastida, including human-pathogenic taxa.


Assuntos
Eucariotos , Kinetoplastida , Humanos , Eucariotos/genética , Prófase Meiótica I , Euglenozoários/genética , Kinetoplastida/genética , Família Multigênica , Filogenia
5.
Vet J ; 296-297: 105974, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36958405

RESUMO

Autoimmune encephalitis (AE) is an important cause of encephalitis in humans and occurs at a similar rate to infectious encephalitis. It is frequently associated with antibodies against the extracellular domain of neuronal proteins. Among human AE, that with antibodies against leucine-rich glioma-inactivated 1 (LGI1) is one of the most prevalent forms, and was recently described in cats with limbic encephalitis (LE). In this study, we describe a large cohort (n = 32) of cats with AE, tested positive for voltage gated potassium channel (VGKC)-antibodies, of which 26 (81%) harboured LGI1-antibodies. We delineate their clinical and paraclinical features as well as long-term outcomes up to 5 years. Similar to human cases, most cats with LGI1-antibodies had a history of focal seizures (83%), clustering in the majority (88%), with interictal behavioural changes (73%). Among feline AE patients, there was no seizure type or other clinical characteristic that could distinguish LGI1-antibody positive from negative cats, unlike the pathognomic faciobrachial dystonic seizures seen in humans. Although six cats were euthanased in the first year for epilepsy-associated reasons, those attaining at least 1-year survival had good seizure control and quality of life with appropriate veterinary care and medication. Acute-phase immunotherapy (prednisolone) was given to the most severely unwell cases and its effect is retrospectively evaluated in 10 cats. Our data show LGI1-antibodies are an important cause of feline encephalitis, sharing many features with human AE. Further research should examine optimal therapeutic management strategies and the cause of LE in seronegative cats, building on paradigms established in the counterpart human disease.


Assuntos
Doenças do Gato , Encefalite , Encefalite Límbica , Humanos , Gatos , Animais , Encefalite Límbica/terapia , Encefalite Límbica/veterinária , Encefalite Límbica/complicações , Qualidade de Vida , Estudos Retrospectivos , Encefalite/veterinária , Encefalite/complicações , Anticorpos , Convulsões/etiologia , Convulsões/veterinária , Convulsões/tratamento farmacológico , Autoanticorpos/uso terapêutico
6.
J Laryngol Otol ; 137(8): 925-929, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36651334

RESUMO

OBJECTIVE: A standard lateral neck dissection should yield at least 18 lymph nodes. The goal of the present study was to examine what factors might influence the number of lymph nodes retrieved during a neck dissection. METHODS: This was a retrospective cohort study in a tertiary academic referral centre for head and neck oncology. Two hundred and nineteen consecutive neck dissections were examined. Age of the patient and primary site were recorded, along with tumour histology, previous radiotherapy and final nodal count. RESULTS: The mean age was 62.2 ± 13.0 years. The most common primary site was the oral cavity (38.8 per cent). The mean number of lymph nodes was 30.63 ± 13.9. In total, 17.8 per cent had undergone previous radiotherapy. The mean number of lymph nodes was 33.26 ± 13.27 in patients with no previous radiation exposure and 18.47 ± 9.46 in those with previous radiation treatment. CONCLUSION: Lymph node yield from a neck dissection is likely multi-factorial in nature. Previous radiotherapy, the only significant contributor, led to a mean reduction of lymph node yield from 33.3 to 18.5.


Assuntos
Neoplasias de Cabeça e Pescoço , Esvaziamento Cervical , Humanos , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Linfonodos/cirurgia , Linfonodos/patologia , Neoplasias de Cabeça e Pescoço/cirurgia , Neoplasias de Cabeça e Pescoço/patologia , Pescoço/patologia , Estadiamento de Neoplasias
7.
J Fungi (Basel) ; 9(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675947

RESUMO

Ericaceae thrive in poor soil, which we postulate is facilitated by microbes living inside those plants. Here, we investigate the growth stimulation of the American cranberry (Vaccinium macrocarpon) by one of its fungal endosymbionts, EC4. We show that the symbiont resides inside the epidermal root cells of the host but extends into the rhizosphere via its hyphae. Morphological classification of this fungus is ambiguous, but phylogenetic inference based on 28S rRNA identifies EC4 as a Codinaeella species (Chaetosphaeriaceae, Sordariomycetes, Ascomycetes). We sequenced the genome and transcriptome of EC4, providing the first 'Omics' information of a Chaetosphaeriaceae fungus. The 55.3-Mbp nuclear genome contains 17,582 potential protein-coding genes, of which nearly 500 have the capacity to promote plant growth. For comparing gene sets involved in biofertilization, we annotated the published genome assembly of the plant-growth-promoting Trichoderma hamatum. The number of proteins involved in phosphate transport and solubilization is similar in the two fungi. In contrast, EC4 has ~50% more genes associated with ammonium, nitrate/nitrite transport, and phytohormone synthesis. The expression of 36 presumed plant-growth-promoting EC4 genes is stimulated when the fungus is in contact with the plant. Thus, Omics and in-plantae tests make EC4 a promising candidate for cranberry biofertilization on nutrient-poor soils.

8.
Genome Res ; 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109147

RESUMO

The unicellular amoeba Acanthamoeba castellanii is ubiquitous in aquatic environments, where it preys on bacteria. The organism also hosts bacterial endosymbionts, some of which are parasitic, including human pathogens such as Chlamydia and Legionella spp. Here we report complete, high-quality genome sequences for two extensively studied A. castellanii strains, Neff and C3. Combining long- and short-read data with Hi-C, we generated near chromosome-level assemblies for both strains with 90% of the genome contained in 29 scaffolds for the Neff strain and 31 for the C3 strain. Comparative genomics revealed strain-specific functional enrichment, most notably genes related to signal transduction in the C3 strain and to viral replication in Neff. Furthermore, we characterized the spatial organization of the A. castellanii genome and showed that it is reorganized during infection by Legionella pneumophila Infection-dependent chromatin loops were found to be enriched in genes for signal transduction and phosphorylation processes. In genomic regions where chromatin organization changed during Legionella infection, we found functional enrichment for genes associated with metabolism, organelle assembly, and cytoskeleton organization. Given Legionella infection is known to alter its host's cell cycle, to exploit the host's organelles, and to modulate the host's metabolism in its favor, these changes in chromatin organization may partly be related to mechanisms of host control during Legionella infection.

9.
iScience ; 25(8): 104840, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35996588

RESUMO

Fungi survive in diverse ecological niches by secreting proteins and other molecules into the environment to acquire food and interact with various biotic and abiotic stressors. Fungal secretome content is, therefore, believed to be tightly linked to fungal ecologies. We sampled 132 genomes from the early-diverging terrestrial fungal lineage zygomycetes (Mucoromycota and Zoopagomycota) and characterized their secretome composition. Our analyses revealed that phylogeny played an important role in shaping the secretome composition of zygomycete fungi with trophic mode contributing a smaller amount. Reconstruction of the evolution of secreted digestive enzymes revealed lineage-specific expansions, indicating that Mucoromycota and Zoopagomycota followed different trajectories early in their evolutionary history. We identified the presence of multiple pathogenicity-related proteins in the lineages known as saprotrophs, suggesting that either the ecologies of these fungi are incompletely known, and/or that these pathogenicity-related proteins have important functions associated with saprotrophic ecologies, both of which invite further investigation.

10.
Proc Natl Acad Sci U S A ; 119(36): e2116841119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037379

RESUMO

Most of the described species in kingdom Fungi are contained in two phyla, the Ascomycota and the Basidiomycota (subkingdom Dikarya). As a result, our understanding of the biology of the kingdom is heavily influenced by traits observed in Dikarya, such as aerial spore dispersal and life cycles dominated by mitosis of haploid nuclei. We now appreciate that Fungi comprises numerous phylum-level lineages in addition to those of Dikarya, but the phylogeny and genetic characteristics of most of these lineages are poorly understood due to limited genome sampling. Here, we addressed major evolutionary trends in the non-Dikarya fungi by phylogenomic analysis of 69 newly generated draft genome sequences of the zoosporic (flagellated) lineages of true fungi. Our phylogeny indicated five lineages of zoosporic fungi and placed Blastocladiomycota, which has an alternation of haploid and diploid generations, as branching closer to the Dikarya than to the Chytridiomyceta. Our estimates of heterozygosity based on genome sequence data indicate that the zoosporic lineages plus the Zoopagomycota are frequently characterized by diploid-dominant life cycles. We mapped additional traits, such as ancestral cell-cycle regulators, cell-membrane- and cell-wall-associated genes, and the use of the amino acid selenocysteine on the phylogeny and found that these ancestral traits that are shared with Metazoa have been subject to extensive parallel loss across zoosporic lineages. Together, our results indicate a gradual transition in the genetics and cell biology of fungi from their ancestor and caution against assuming that traits measured in Dikarya are typical of other fungal lineages.


Assuntos
Fungos , Estágios do Ciclo de Vida , Filogenia , Diploide , Fungos/classificação , Fungos/genética , Genoma Fúngico/genética
11.
J Laryngol Otol ; 136(12): 1278-1283, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35730238

RESUMO

OBJECTIVE: Post-extubation dysphagia in critically ill patients is known to affect about 18 per cent of mixed medical-surgical intensive care unit patients. This study investigated the incidence of post-extubation dysphagia in adult intensive care unit patients with coronavirus disease 2019. METHOD: This study was a retrospective analysis of consecutive intensive care unit patients prospectively screened for dysphagia. Systematic screening of all extubated intensive care unit patients at our tertiary centre was performed using the Bernese intensive care unit dysphagia algorithm. The primary outcome measure was the incidence of post-extubation dysphagia. RESULTS: A total of 231 critically ill adult coronavirus disease 2019 positive patients were included, and 81 patients remained in the final analysis after exclusion criteria were applied (e.g. patients transferred). Dysphagia screening positivity was 25 of 81 (30.9 per cent), with 28.2 per cent (22 of 78) having confirmed dysphagia by specialist examination within 24 hours (n = 3 lost to follow up). CONCLUSION: In this observational study, it was observed that the incidence of dysphagia in adult critically ill coronavirus disease 2019 patients was about 31 per cent (i.e. increased when compared with a historical pre-pandemic non-coronavirus disease 2019 intensive care unit cohort).


Assuntos
COVID-19 , Transtornos de Deglutição , Humanos , Adulto , Estado Terminal/epidemiologia , Estudos Retrospectivos , Transtornos de Deglutição/diagnóstico , Transtornos de Deglutição/epidemiologia , Transtornos de Deglutição/etiologia , COVID-19/complicações , COVID-19/epidemiologia , Incidência , Cuidados Críticos , Unidades de Terapia Intensiva
12.
Front Microbiol ; 13: 866187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369492

RESUMO

Mitochondrial genomes-in particular those of fungi-often encode genes with a large number of Group I and Group II introns that are conserved at both the sequence and the RNA structure level. They provide a rich resource for the investigation of intron and gene structure, self- and protein-guided splicing mechanisms, and intron evolution. Yet, the degree of sequence conservation of introns is limited, and the primary sequence differs considerably among the distinct intron sub-groups. It makes intron identification, classification, structural modeling, and the inference of gene models a most challenging and error-prone task-frequently passed on to an "expert" for manual intervention. To reduce the need for manual curation of intron structures and mitochondrial gene models, computational methods using ERPIN sequence profiles were initially developed in 2007. Here we present a refinement of search models and alignments using the now abundant publicly available fungal mtDNA sequences. In addition, we have tested in how far members of the originally proposed sub-groups are clearly distinguished and validated by our computational approach. We confirm clearly distinct mitochondrial Group I sub-groups IA1, IA3, IB3, IC1, IC2, and ID. Yet, IB1, IB2, and IB4 ERPIN models are overlapping substantially in predictions, and are therefore combined and reported as IB. We have further explored the conversion of our ERPIN profiles into covariance models (CM). Current limitations and prospects of the CM approach will be discussed.

13.
Appl Microbiol Biotechnol ; 106(7): 2587-2601, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35318523

RESUMO

Gongronella is a genus of fungi in Mucorales (Mucoromycota). Some of its members have important biotechnological applications, but until now, not a single mitogenome has been characterized in Gongronella. Here, we present the complete mitogenome assembly of Gongronella sp. w5, a soil isolate known to interact with plants and several fungi. Its 36,593-bp circular mitogenome encodes the large and small subunit rRNAs, 14 standard mitochondrial proteins, 24 tRNAs, three free-standing ORF proteins, and the RNA subunit of RNase P (rnpB). These genes arrange in an order novel to known fungal mitogenomes. Three group I introns are present in the cob, cox1, and nad5 genes, respectively, and they are probably acquired by horizontal gene transfer. Phylogenetic analysis based on mitochondrion-encoded proteins supports the grouping of Gongronella sp. w5 with Absidia glauca, forming the Cunninghamellaceae clade within Mucoromycota. Gongronella and most other Mucoromycota species are predicted to use the standard genetic code in mitochondrial translation, rather than code 4 assigned by GenBank. A comparison among seven publicly available mitogenomes in Mucoromycota reveals the presence of the same 14 typical protein-coding genes plus rnpB, yet substantial variation in mitogenome size, intron number, gene order, and orientation. In this comparison, the uniqueness of Gongronella is evident from similarly large differences to its closest phylogenetic neighbor, A. glauca. This study promotes our understanding of fungal evolution in Mucoromycota. KEY POINTS: • This study reports the first mitogenome in Gongronella, which presents a novel gene order. • Different Mucoromycota mitogenomes show substantial variation of gene organizations. • Most Mucoromycota species use the standard genetic code to translate mitochondrial genes.


Assuntos
Genoma Mitocondrial , Mucorales , Ordem dos Genes , Genes Mitocondriais , Filogenia
14.
Int J Pediatr Otorhinolaryngol ; 150: 110861, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34583300

RESUMO

INTRODUCTION: Corona-virus Disease 2019 (COVID-19) has had a huge impact on the delivery of healthcare worldwide, particularly elective surgery. There is a lack of data regarding risk of postoperative COVID-19 infection in children undergoing elective surgery, and regarding the utility of pre-operative COVID-19 testing, and preoperative "cocooning" or restriction of movements. The purpose of this present study was to examine the safety of elective paediatric Otolaryngology surgery during the COVID-19 pandemic with respect to incidence of postoperative symptomatic COVID-19 infection or major respiratory complications. MATERIALS AND METHODS: Prospective cohort study of paediatric patients undergoing elective Otolaryngology surgery between September and December 2020. Primary outcome measure was incidence of symptomatic COVID-19 or major respiratory complications within the 14 days after surgery. Parents of prospectively enrolled patients were contacted 14 days after surgery and enquiry made regarding development of postoperative symptoms, COVID-19 testing, or diagnosis of COVID-19. RESULTS: 302 patients were recruited. 125 (41.4%) underwent preoperative COVID-19 RT-PCR testing. 66 (21.8%) restricted movements prior to surgery. The peak 14-day COVID-19 incidence during the study was 302.9 cases per 100,000 population. No COVID-19 infections or major respiratory complications were reported in the 14 day follow-up period. CONCLUSION: The results of our study support the safety of elective paediatric Otolaryngology surgery during the pandemic, in the setting of community incidence not exceeding that observed during the study period.


Assuntos
COVID-19 , Pandemias , Teste para COVID-19 , Criança , Procedimentos Cirúrgicos Eletivos , Humanos , Estudos Prospectivos , SARS-CoV-2
16.
Res Dev Disabil ; 115: 103988, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34090085

RESUMO

BACKGROUND: Trauma and intellectual disability are highly prevalent in the serious mental ill (SMI). Little is known of their impact on general functioning and quality of life. AIM: This study investigated the association of trauma and intellectual disability (ID) with general functioning and quality of life in SMI. METHODS: Patient characteristics and diagnoses were extracted from electronic patient records. We used the Trauma Screening Questionnaire (TSQ), the Screener for Intelligence and Learning Disabilities (SCIL), the Health of the Nation Outcome Scale (HoNOS) and the Manchester Short Assessment of Quality of Life (MANSA) to asses trauma, intellectual impairment, general functioning and quality of life. Proportions on cut-off scores were analysed with cross-tabulations, questionnaire scores with t-tests. Multivariable associations were determined by logistic regression analysis. RESULTS: 611 patients from an outpatient service were assessed. Trauma and ID were associated with each other (r = -0.207). Trauma was associated with worse general functioning and a lower quality of life. Mild intellectual disability (MID) or borderline intellectual functioning (BIF) were associated with worse general functioning. CONCLUSIONS: For patients with SMI, trauma and ID should be identified early in care to treat the lower general functioning and quality of life it caused.


Assuntos
Deficiência Intelectual , Deficiências da Aprendizagem , Humanos , Deficiência Intelectual/epidemiologia , Inteligência , Deficiências da Aprendizagem/epidemiologia , Pacientes Ambulatoriais , Qualidade de Vida
17.
Nat Commun ; 12(1): 2947, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011950

RESUMO

The type 2 secretion system (T2SS) is present in some Gram-negative eubacteria and used to secrete proteins across the outer membrane. Here we report that certain representative heteroloboseans, jakobids, malawimonads and hemimastigotes unexpectedly possess homologues of core T2SS components. We show that at least some of them are present in mitochondria, and their behaviour in biochemical assays is consistent with the presence of a mitochondrial T2SS-derived system (miT2SS). We additionally identified 23 protein families co-occurring with miT2SS in eukaryotes. Seven of these proteins could be directly linked to the core miT2SS by functional data and/or sequence features, whereas others may represent different parts of a broader functional pathway, possibly also involving the peroxisome. Its distribution in eukaryotes and phylogenetic evidence together indicate that the miT2SS-centred pathway is an ancestral eukaryotic trait. Our findings thus have direct implications for the functional properties of the early mitochondrion.


Assuntos
Evolução Molecular , Mitocôndrias/genética , Mitocôndrias/metabolismo , Sistemas de Secreção Tipo II/genética , Sistemas de Secreção Tipo II/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Eucariotos/classificação , Eucariotos/genética , Eucariotos/metabolismo , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Proteínas Mitocondriais/classificação , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Modelos Moleculares , Naegleria/classificação , Naegleria/genética , Naegleria/metabolismo , Peroxissomos/metabolismo , Filogenia , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Homologia de Sequência de Aminoácidos , Sistemas de Secreção Tipo II/classificação
18.
G3 (Bethesda) ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-33871031

RESUMO

Fungal mitochondrial genomes encode genes involved in crucial cellular processes, such as oxidative phosphorylation and mitochondrial translation, and the molecule has been used as a molecular marker for population genetics studies. Coccidioides immitis and C. posadasii are endemic fungal pathogens that cause coccidioidomycosis in arid regions across both American continents. To date, approximately 150 Coccidioides isolates have been sequenced to infer patterns of variation in nuclear genomes. However, less attention has been given to the mitochondrial genomes of Coccidioides. In this report, we describe the assembly and annotation of mitochondrial reference genomes for two representative strains of C. posadasii and C. immitis, as well as assess population variation among 77 selected genomes. The sizes of the circular-mapping molecules are 68.2 Kb in C. immitis and 75.1 Kb in C. posadasii. We identify 14 mitochondrial protein-coding genes common to most fungal mitochondria, which are largely syntenic across different populations and species of Coccidioides. Both Coccidioides species are characterized by a large number of group I and II introns, harboring twice the number of elements as compared to closely related Onygenales. The introns contain complete or truncated ORFs with high similarity to homing endonucleases of the LAGLIDADG and GIY-YIG families. Phylogenetic comparisons of mitochondrial and nuclear genomes show extensive phylogenetic discordance suggesting that the evolution of the two types of genetic material is not identical. This work represents the first assessment of mitochondrial genomes among isolates of both species of Coccidioides, and provides a foundation for future functional work.


Assuntos
Coccidioidomicose , Genoma Mitocondrial , Humanos , Coccidioides/genética , Filogenia , Coccidioidomicose/epidemiologia , Coccidioidomicose/genética , Coccidioidomicose/microbiologia
19.
Neuropathol Appl Neurobiol ; 47(2): 316-327, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32910464

RESUMO

AIMS: Progressive encephalomyelitis with rigidity and myoclonus (PERM) is a life-threatening condition often associated with highly raised serum antibodies to glycine receptors (GlyRs); these bind to the surface of large neurons and interneurons in rodent brain and spinal cord sections and, in vitro, inhibit function and reduce surface expression of the GlyRs. The effects in vivo have not been reported. METHODS: Purified plasma IgG from a GlyR antibody-positive patient with PERM, and a healthy control (HC), was injected daily into the peritoneal cavity of mice for 12 days; lipopolysaccharide (LPS) to open the blood-brain barrier, was injected on days 3 and 8. Based on preliminary data, behavioural tests were only performed 48 h post-LPS on days 5-7 and 10-12. RESULTS: The GlyR IgG injected mice showed impaired ability on the rotarod from days 5 to 10 but this normalized by day 12. There were no other behavioural differences but, at termination (d13), the GlyR IgG-injected mice had IgG deposits on the neurons that express GlyRs in the brainstem and spinal cord. The IgG was not only on the surface but also inside these large GlyR expressing neurons, which continued to express surface GlyR. CONCLUSIONS: Despite the partial clinical phenotype, not uncommon in passive transfer studies, the results suggest that the antibodies had accessed the GlyRs in relevant brain regions, led to antibody-mediated internalization and increased GlyR synthesis, compatible with the temporary loss of function.


Assuntos
Autoanticorpos/farmacologia , Encefalomielite/imunologia , Imunoglobulina G/farmacologia , Neurônios Motores/metabolismo , Rigidez Muscular/imunologia , Receptores de Glicina/metabolismo , Animais , Autoanticorpos/imunologia , Autoantígenos/imunologia , Autoantígenos/metabolismo , Tronco Encefálico/imunologia , Tronco Encefálico/metabolismo , Encefalomielite/metabolismo , Humanos , Imunoglobulina G/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/imunologia , Rigidez Muscular/metabolismo , Mioclonia/imunologia , Mioclonia/metabolismo , Receptores de Glicina/imunologia , Medula Espinal/imunologia , Medula Espinal/metabolismo
20.
Mol Biol Evol ; 38(3): 788-804, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32886790

RESUMO

The mitoribosome, as known from studies in model organisms, deviates considerably from its ancestor, the bacterial ribosome. Deviations include substantial reduction of the mitochondrial ribosomal RNA (mt-rRNA) structure and acquisition of numerous mitochondrion-specific (M) mitoribosomal proteins (mtRPs). A broadly accepted view assumes that M-mtRPs compensate for structural destabilization of mt-rRNA resulting from its evolutionary remodeling. Since most experimental information on mitoribosome makeup comes from eukaryotes having derived mitochondrial genomes and mt-rRNAs, we tested this assumption by investigating the mitochondrial translation machinery of jakobids, a lineage of unicellular protists with the most bacteria-like mitochondrial genomes. We report here proteomics analyses of the Andalucia godoyi small mitoribosomal subunit and in silico transcriptomic and comparative genome analyses of four additional jakobids. Jakobids have mt-rRNA structures that minimally differ from their bacterial counterparts. Yet, with at least 31 small subunit and 44 large subunit mtRPs, the mitoriboproteome of Andalucia is essentially as complex as that in animals or fungi. Furthermore, the relatively high conservation of jakobid sequences has helped to clarify the identity of several mtRPs, previously considered to be lineage-specific, as divergent homologs of conserved M-mtRPs, notably mS22 and mL61. The coexistence of bacteria-like mt-rRNAs and a complex mitoriboproteome refutes the view that M-mtRPs were ancestrally recruited to stabilize deviations of mt-rRNA structural elements. We postulate instead that the numerous M-mtRPs acquired in the last eukaryotic common ancestor allowed mt-rRNAs to pursue a broad range of evolutionary trajectories across lineages: from dramatic reduction to acquisition of novel elements to structural conservatism.


Assuntos
Genoma Mitocondrial , Genoma de Protozoário , Ribossomos Mitocondriais , RNA Ribossômico , Proteínas Ribossômicas , Eucariotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...